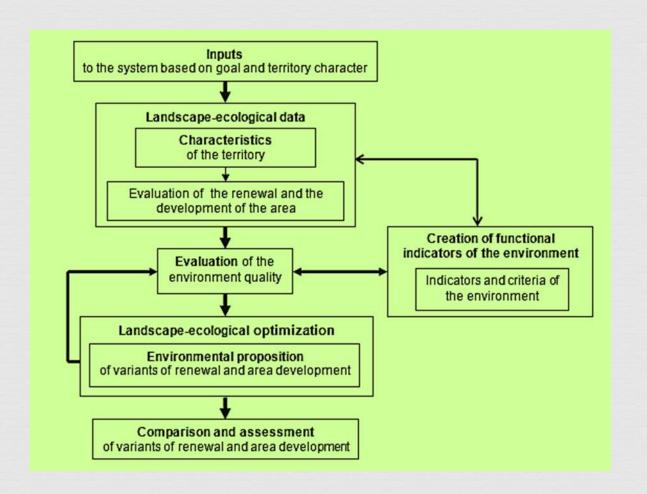


Methodology of the environment quality evaluation



Procedure of the development potential of the environment

Table 1: Classification of indicators for the evaluation of the development potential of the area

Files	Indicators
	A. Abiotic components (1-4)
	B. Biotic components (5-6)
I. Localisation	C. Elements of current landscape structure (7-9)
predispositions	D. Character of the landscape (10-21)
	E. Stress appearances and sources (22-28)
II. Selective	F. Urban conditions (29-32)
predispositions	G. Demographic, socio – economic and other conditions (33-35)
	H. Communication potential (36-37)
III. Realisation	I. Material and technical potential (38-48)
predispositions	J. Investment and service requirements (49-55)

Methodology of the environment quality evaluation

Procedure of the development potential of the environment

Evaluation of the development potential of the area:

a) determination of qualitative multipliers

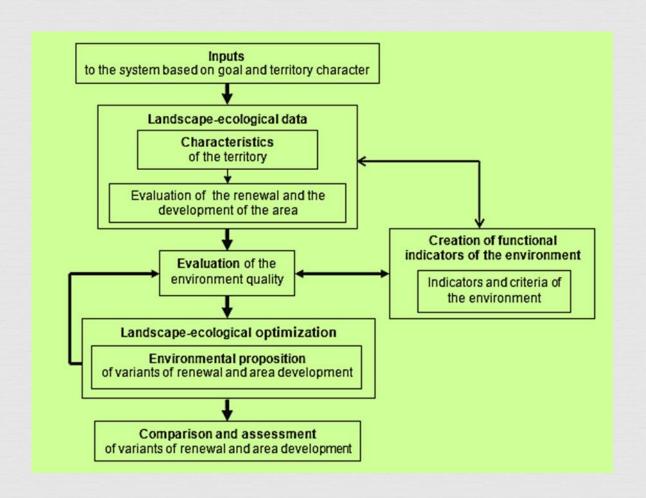
$$U_j = f_j (P_j)$$

 P_j - analytical indicator
 $U_j = \langle 0; 1 \rangle$

b) determination of quantitative multipliers

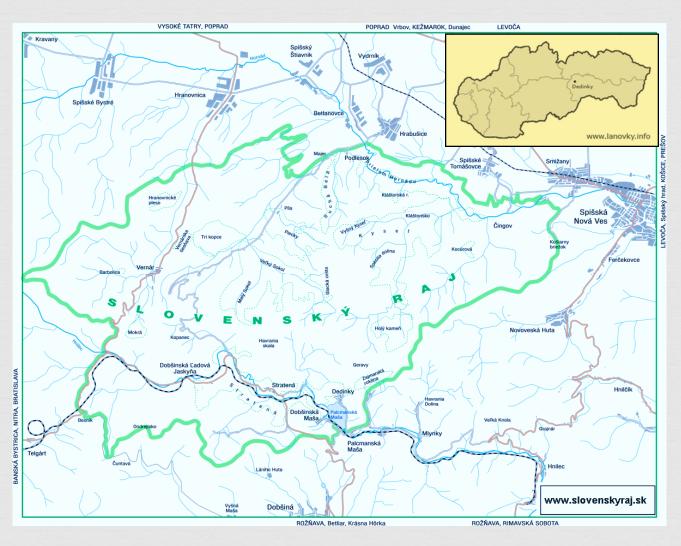
 w_i - the weights of indicators

$$0 \le w_j < 1$$


$$\sum_{j=1}^{55} w_j = 1$$

c) determination of the total value of the environment quality

$$U_{i} = \sum_{j=1}^{55} U_{j(i)} \times w_{j}$$


 U_j – value of qualitative multiplier P_j , w_j – value of quantitative multiplier P_j , i – variants of solution (V_1, V_2, V_3) .

METHODOLOGY OF THE ENVIRONMENT QUALITY EVALUATION

Procedure of the development potential of the environment

CHARACTERISTICS OF THE TERRITORY

Village Dedinky

- •Rožňava district
- •area 364 ha
- •340 inhabitants

THE DEVELOPMENT OF THE AREA

Development potential of the village Dedinky

The analysis of current state of the environmental and atrophic

conditions:

- environmental,
- demographical,
- economical,
- infrastructural,
- cultural and other ability.

EVALUATION OF THE RENEWAL AND THE DEVELOPMENT OF THE AREA

Territorial elements

Forests	137 ha
Meadows and pastures	78 ha
Agricultural land	15 ha
Orchards	7 ha
Water bodies	85 ha
Urbanized area	42 ha

Barrier of the territory development:

- topography and terrain exposure,
- protection zones in terms of Slovak legislation,
- compliance with the functional hierarchy and spatial layout,
- measures and limits in the field of nature conservation,
- spatial and architectural criteria.

ENVIRONMENTAL PROPOSITION OF VARIANTS OF RENEWAL AND AREA DEVELOPMENT

Table 2 Suggested activities for each variations of the solution

Zero variation	Variation 1	Variation 2
- Keeping the	Suggested activities :	Extension of the activities of
current state of	-building of basic infrastructure in the field of	Variation 1:
the model	water management,	-building of a sports facilities
territory	-finishing of road and tourist infrastructure,	and a holiday resorts,
	-development of telecommunication	-finishing of catering
	infrastructure,	establishment and
	-reconstruction in the division of housing	accommodation facilities,
	(refurbishment of the folk buildings) and its	-revival of historical wooden
	use for accommodation and/or enterprise,	bridge constructions and the
	-revival of traditional crafts,	remaints of the mining
	-creation of touring road and information	activities,
	system,	-revitalizations of the river beds
	-establishment of a system of separating	and small ponds,
	waste and alternative energy sources,	-removal of dumped waste
	-security of restoration of the natural	material,
	environment and the local system of the	
	ecological stability.	

EVALUATION OF THE ENVIRONMENT QUALITY

TOTAL VALUE

OF THE ENVIRONMENT

QUALITY

$$U_{i} = \sum_{j=1}^{55} U_{j(i)} \times W_{j}$$

*								
	Dielčie ukazovatele	w _i	Variant 1			Variant 2		
			P	U_j	U_j*w_j	P	U_j	U_j*w_j
	 Reliéf a topografický charakter 	0,01556	200	0,578	0,00899	200	0,578	0,00899
	Vodný potenciál	0,03307	1,5	0,500	0,01654	1,5	0,500	0,01654
	 Pôdny potenciál 	0,03240	2	0,750	0,02430	2	0,750	0,02430
	4. Stav ovzdušia	0,03442	20	0,763	0,02626	20	0,763	0,02626

Ukazovateľ kvality prostredia 0,47175						0,55116	
55. Rozvojová adaptabilita v čase	0,00910	2,6	0,944	0,00859	2,6	0,944	0,00859
54. Spoľahlivosť a bezpečnosť prevádzky	0,02331	2	0,670	0,01562	2,5	0,830	0,01934
53. Energetická náročnosť prevádzky	0,01385	1	0,670	0,00928	1	0,670	0,00928
52. Výstavba	0,00439	1	0,950	0,00417	1	0,950	0,00417
51. Náklady	0,01385	1,5	0,188	0,00260	2,6	0,701	0,00971
50. Výkonnosť	0,01183	1,5	0,308	0,00364	2,6	0,784	0,00927
49. Ekonomická efektívnosť	0,02093	2	0,370	0,00774	2,6	0,701	0,01467
48. Turistický ruch	0,00608	0,25	0,678	0,00412	0,15	0,798	0,00485

Territorial elements	k _v	A _i for V _o	A _i for V ₁	A _i for V ₂
Forests	0,7	137 ha	137 ha	130 ha
Meadows and pastures	0,65	78 ha	78 ha	72 ha
Agricultural land	0,2	15 ha	15 ha	15 ha
Orchards	0,43	7 ha	7 ha	7 ha
Water bodies	0,8	85 ha	85 ha	85 ha
Urbanized area	-0,6	42 ha	42 ha	55 ha
Stability index	0,54	0,54	0,49	

ECOLOGICAL STABILITY OF LANDSCAPE

$$K_{SE} = \sum_{j=1}^{m} \frac{k_{v}.A_{j}}{p}$$

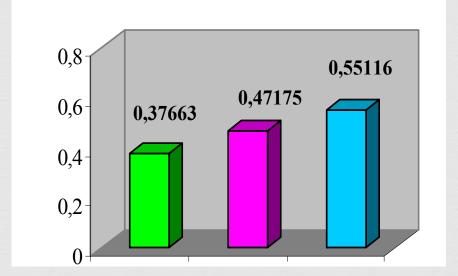
Jakościowy wskaźnik stabilności ekologicznej K_{SE} (Miklós 1986, Mederly et al., 2006, zmienione)

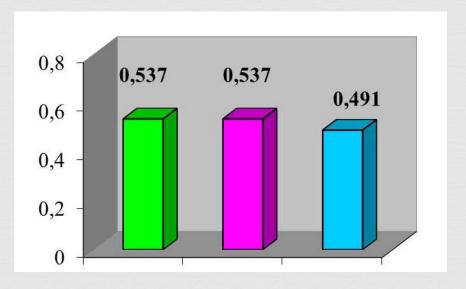
$$K_{SE} = \sum_{j=1}^{m} \frac{k_{v}.A_{j}}{p}$$

Przykłady k_{pn}:

lasy 1,00 zabudowa 0,00 powierzchnie wodne 0,79 $\mathbf{p_n}$ - udział powierzchni poszczególnych elementów struktury przestrzenno-funkcjonalnej,

 $\mathbf{k}_{\mathtt{pn}}$ - współczynniki stabilności ekologicznej,


p - powierzchnia badanego obszaru.


K _{SE2}	Klasyfikacja obszaru		
$0.80 < K_{SE2} \le 1.00$	obszar wyraźnie stabilny		
$0,60 < K_{SE2} \le 0,80$	obszar stabilny		
$0,40 < K_{SE2} \le 0,60$	obszar częściowo stabilny		
$0.20 < K_{SE2} \le 0.40$	obszar niestabilny		
$K_{SE2} \leq 0,20$	obszar wyraźnie niestabilny		

COMPARISON AND ASSESSMENT OF VARIANTS OF RENEWAL AND AREA DEVELOPMENT

Indicators of the environment quality for separate variants of the development

Indices of the environment stability for variants of model area development

Zero variant

Variant 1

■ Variant 2

COMPARISON AND ASSESSMENT OF VARIANTS OF RENEWAL AND AREA DEVELOPMENT

Zero variant $(U_0 = 0.38, IS_0 = 0.54)$

- · does not represent any basic changes or any interference to the environment,
- from an economic point of view, it takes into account the stagnation of tourism and development of the countryside,
- from an ecological point of view, it looks like the most suitable variation.

Variant 1 ($U_1 = 0.48$, $IS_1 = 0.54$)

- suggested activities are focused upon the increasing of region wide importance of particular holiday resorts and their year round use, building a new catering establishments and accommodation and increasing the standard of existing facilities,
- the variation is from environmental and economic point of view optimal and actual.

Variant 2 ($U_2 = 0.55$, $IS_2 = 0.49$)

- from an ecological point of view, this represents an interference with the environment and changing of the countryside in a relatively short space of time,
- it is financially demanding,
- from the point of view of using the potential of the region, it is promising.

CONCLUSION

- ➤ Total index of environment quality presents potential of the model territory for needs of its future development. There were assigned databases of main indicators modified for evaluation of the development potential of the area with the emphasis to technical and civil facilities.
- The optimal variant of the development and renewal of the residence must be able to reconcile the requirements of social development with the needs of conservation and natural resources in respect of maintaining the ecological stability of the area.
- ➤ The introduction of the subjective assessment to the decision model does not distort the essence of the objective methods and based on information and input according to predetermined, formalized procedures contributes to the solution.
- The aim is to improve decision making in the environment management using multi-criteria analysis and alternative solutions in terms of the sustainable development of the territory.

